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The Goal 

The goal of this project is to find a realistic model in which humans not only survive a zombie 

outbreak but return to and exceed prior population levels. 

Assumptions 

In this mathematical model, several key assumptions are made, drawing inspiration from a 

combination of sources including the film I Am Legend, popular cultural interpretations, and my 

own ideas. The assumptions are as follows: 

• Zombies are infected with a strange form of cancer which does not kill the host but feeds 

on organic material obtained from humans (brains). A side effect is extreme aggression 

and the desire to spread the disease when not in need of feeding. 

• When humans and zombies interact, one of three results are possible. The zombie infects 

the human, (turning them into a zombie), the zombie kills the human (to eat or for sport), 

or the human kills the zombie. 

• Because dead zombies and humans can return in zombie form, the humans burn the 

bodies of humans and the zombies to prevent further outbreak. 

• Humans are born and die at the same rate in this model as they do in real life, and there 

are the same number of people in the model as there are in the real world. 

• A very small portion of the human population is immune (I) to zombification (0.1%) 

• The rest of the human population is susceptible (S) to zombification (99.9%) 

• The outbreak occurs as a result of a newfound cure for cancer. The cure for cancer is 

administered at birth and cannot be given to adults. Unexpectedly, the cure for cancer has 

side effects. 99% are successfully made immune to cancer (and zombification), but 0.5% 

die from complications with the vaccination and another 0.5% are turned into zombies.  

• Despite this unexpected and catastrophic outcome, the humans persist in applying the 

antidote to newborns because of the significantly larger percentage of success. 

 

The Model 

I’ = -(Natural death rate*I) - (Death rate from zombie attacks*I*Z) + (Vaccination success 

rate*birth rate*(I+S)) 

S’ = -(Natural death rate*S) – (Death rate from zombie attacks*S*Z) – (rate of 

zombification*S*Z) 

Z’ = (rate of zombification*S*Z) – (Zombie death rate from humans*(I+S)*Z) + (zombification 

rate from vaccination*rate of birth*(I+S)) 

D’ = (natural death rate*I) + (natural death rate*S) + (death from zombies rate*I*Z) + (death 

from zombies rate*S*Z) + (Zombie death rate from humans*I*S*Z) + (rate of death from 

vaccination*rate of birth*(I+S)) 
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Where: 

(I) Is the immune population 

(S) is the susceptible population 

(Z) is the zombie population 

(D) is the number of deaths 

 

 

 

 

 

 

 

Solving the System of Equations 

Using a Runge-Kutta-4 n-dimensional code in Matlab, the previous 4 equations were solved and 

plotted. (see code in appendix) 

Further assumptions for the values of each variable had to be made. Note that slightly different 

values of variables led to vastly different outcomes. (see below for assumptions and 

explanations.)  Also note that the constants were approximated in such a way the time units 

would be worth 1 day each. 100,000 time steps were taken for precision accuracy. 

bR = .00004781; setting birth rate (there are 360,000 births per day, so 360,000/7.53b per 

person per day) 

Nd = .00002013; setting rate of natural deaths (151,600 deaths per day so 151k/7.53b per 

person per day) 

Zd = .02; setting rate of deaths from zombies (it seems reasonable that most of the time, humans 

are able to escape or kill the zombie, though they may be infected) 

Zb = .18; setting rate of zombification  

Q  = .8; rate of humans killing zombies, it seems reasonable that humans should succeed far 

more often than the zombies given our advanced weaponry, militaries and intelligence. 

Im = .99; Ki = .005; Zo = .005 (vaccination outcomes) 

The result was the following graph, where green represents immune humans, blue represents 

susceptible humans, and red represents zombies. The x axis represents time in days, the y axis 

shows the population, in billions. 
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As can be seen from the graph, the humans emerge victorious over the zombie threat. For a 

closer look at how the zombie population changed over time, see the below graph and analysis. 

Again, the x axis represents time in days and the y axis represents the population, in billions. 

 

As can be seen, the zombie population initially grows exponentially quickly, to roughly 380 (3.8 

billion*10^-7), before slowing in growth and reaching equilibrium. The zombies initially grow 

extremely quickly due to the abundance of available targets, but as their number increases, the 

human’s effectiveness in killing them takes command and damps the population from growing 

beyond approximately 380. Note that this equilibrium will continue, as newborns continually 

have a 0.5% chance of becoming zombies at the time of vaccination. This poses the interesting 

scenario in which zombies and humans would coexist without one bringing the demise of the 

other. Overall, however, the humans are largely successful and continue as a species without 

much trouble. The above scenario seems most reasonable. 

 

Alternative Scenarios 

In this section, I explore other interesting outcomes which result from a variation of the values of 

the variables. 
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In the following case, we see that changing the outcomes of human-zombie interactions from 

80% human victory, 18% zombification rate, and 2% human death from zombies rate to 

45%/47.25%/2.75% produces the unique situation in which both humans and zombies have a 

stable equilibrium at 0. The rates signify that zombies and humans are essentially an equal match 

in a fight. In this situation, no population comes to control. This is the truest form of a “zombie 

apocalypse”. Almost everyone dies within 100 days of the initial outbreak. 

 

In the final scenario, zombies emerge as the sole form of life remaining. Again, by changing the 

outcome rates of human-zombie interactions, the outcome is vastly altered. The rates were this 

time changed to 40%/55%/5%. This situation could be likened to a fiercer, faster, harder to kill 

zombie. The graph below summarizes this outcome. 

 

Evaluation 

From the different scenarios posed in this paper, it is clear that humans can defeat the zombie 

outbreak given the right conditions. The key to human success hinges on their ability to 

effectively kill zombies when interacting with them. In order to survive the outbreak, it seems 

that the humans need to kill the zombies in at least 50% of their interactions. This goal seems 

realistic given the nature of weaponry and skill available to humans, including vast militaries. In 

conclusion, the most realistic assessment of this model is resounding success for humans. While 

the zombies claim the lives of many, the human population would not only meet but exceed its 

initial value within a few years after the outbreak. 
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Appendix 

Runge-Kutta-4 Code for Matlab 

%write code for rk4 solver to solve zombie-human model 

function [y,t] = rk4_n_dimensional(f,t0,T,y0,N); 

  

h = (T-t0)/(N-1); %calculate and store the step size 

t = linspace(t0,T,N); %A vector to store the time values 

y = zeros(length(y0),N); %Initialize the Y vector with the same length as that of the 

initial value vector 

y(:,1)=y0; %first column of Y matrix is the initial value 

  

for i = 1:(N-1) 

    k1=h*f(t(i),y(:,i)); 

    k2=h*f(t(i)+(.5*h),y(:,i)+(.5*k1)); 

    k3=h*f(t(i)+(.5*h),y(:,i)+(.5*k2)); 

    k4=h*f(t(i)+h,y(:,i)+k3); 

    y(:,i+1)=y(:,i)+(1/6)*(k1+(2*k2)+(2*k3)+k4); 

end 

%end of rk4 portion of code 

 

Code for Humans vs. Zombies model in Matlab 

close all 

%solver for zombie vs human model 

%t is 1 day per time unit 

bR = .00004781; %setting birth rate (there are 360,000 births per day, so 

360,000/7.53b per person per day) 

Nd = .00002013; %setting rate of natural deaths (151,600 deaths per day so 151k/7.53b 

per person per day) 

Zd = .02; %setting rate of deaths from zombies 

Zb = .18; %setting rate of zombification (depends on how hungry they are) 

Q  = .8; %setting rate of humans killing zombies (my zombies are really slow and dumb) 

Im = .99; %setting vaccination success rate 

Ki = .005; %setting vaccination mortality rate 

Zo = .005; %setting vaccination zombification rate 

  

ZvH = @(t,x)   [(-(Nd*x(1))-(Zd*x(1).*x(3))+(Im*bR.*(x(1)+x(2)))); 

               (-(Nd*x(2))-(Zd*x(2).*x(3))-(Zb*x(2).*x(3))); 

 ((Zb*(x(2).*x(3)))-(Q*(x(1)+x(2)).*x(3)) 

+((Zo*bR).*(x(1)+x(2))));          

((Nd*x(1))+(Nd*x(2))+(Zd*x(1).*x(3))+(Zd*x(2).*x(3))+(Q*(x(1)+x(2)

).*x(3))+(Ki*(x(1)+x(2))))]; 

            

%initial conditions--7.53 billion people currently in the world 

%say .1% are immune, or .00753 billion 

%and 99.9% are susceptible, or 7.52247 billion 

%no initial zombies or dead 

[x,t] = rk4_n_dimensional(ZvH,0,10000,[.00753;7.52247;0;0],100000); 

  

plot(t,x(1,:),'g') 

hold on 

plot(t,x(2,:),'b') 

hold on 

plot(t,x(3,:),'r') 

 


